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Outline of this talk

The volatility surface: Stylized facts

The Rough Fractional Stochastic Volatility (RFSV) model

The Rough Bergomi (rBergomi) model

Change of measure
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The SPX volatility surface as of 15-Sep-2005

We begin by studying the SPX volatility surface as of the
close on September 15, 2005.

Next morning is triple witching when options and futures set.

We will plot the volatility smiles, superimposing an SVI fit.

SVI stands for “stochastic volatility inspired”, a well-known
parameterization of the volatility surface.
We show in [Gatheral and Jacquier] how to fit SVI to the
volatility surface in such a way as to guarantee the absence of
static arbitrage.

We then interpolate the resulting SVI smiles to obtain and
plot the whole volatility surface.
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SPX volatility smiles as of 15-Sep-2005

Figure 1: SPX volatility smiles as of 15-Sep-2005.
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SPX volatility smiles as of 15-Sep-2005

Figure 2: SVI fit superimposed on smiles.
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The SPX volatility surface as of 15-Sep-2005

Figure 3: The March expiry smile as of 15-Sep-2005 – the SVI fit looks
OK!
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The SPX volatility surface as of 15-Sep-2005

Figure 4: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).



Implied volatility Stochastic volatility Pricing under rBergomi Change of measure

Interpreting the smile

We could say that the volatility smile (at least in equity
markets) reflects two basic observations:

Volatility tends to increase when the underlying price falls,

hence the negative skew.

We don’t know in advance what realized volatility will be,

hence implied volatility is increasing in the wings.

It’s implicit in the above that more or less any model that is
consistent with these two observations will be able to fit one
given smile.

Fitting two or more smiles simultaneously is much harder.

Heston for example fits a maximum of two smiles
simultaneously.
SABR can only fit one smile at a time.
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Term structure of at-the-money skew

What really distinguishes between models is how the
generated smile depends on time to expiration.

In particular, their predictions for the term structure of ATM
volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 5: Term structure of ATM skew as of 15-Sep-2005, with power
law fit τ−0.44 superimposed in red.
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SPX volatility surfaces from 2005 to 2011

Figure 6: SPX volatility surfaces over the years as of the close before
September SQ.
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Observations

We note that although the levels and orientations of the
volatility surfaces change over time, their rough shape stays
very much the same.

Let’s now look at the term structure of ATM skew on these
dates.
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Term structure of SPX ATM skew as over the years

Figure 7: SPX ATM skew over the years as of the close before
September SQ. Power-laws fits are superimposed.
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Conclusion

The shape of the volatility surface seems to be more-or-less
stable.

It’s then natural to look for a time-homogeneous model.

The term structure of ATM volatility skew

ψ(τ) ∼ 1

τα

with α ∈ (0.3, 0.5).
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Conventional stochastic volatility models

Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.
Empirically, we find that the term structure of ATM skew is
proportional to 1/Tα for some 0 < α < 1/2 over a very wide
range of expirations.
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Bergomi Guyon

Define the forward variance curve ξt(u) = E [vu| Ft ].

According to [Bergomi and Guyon], in the context of a
variance curve model, implied volatility may be expanded as

σBS(k,T ) = σ0(T ) +

√
w

T

1

2w2
C x ξ k + O(η2) (1)

where η is volatility of volatility, w =
∫ T

0 ξ0(s) ds is total
variance to expiration T , and

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (2)

Thus, given a stochastic model, defined in terms of an SDE,
we can easily (at least in principle) compute this smile
approximation.
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Connecting the time series with options prices

Suppose for a moment that the pricing measure Q is the
same as the historical (or physical) measure P.

Then equation (2) also connects the prices of options with
statistics of the historical time series of volatility.
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The Bergomi model

The n-factor Bergomi variance curve model reads:

ξt(u) = ξ0(u) exp

{
n∑

i=1

ηi

∫ t

0
e−κi (t−s) dW

(i)
s + drift

}
.

(3)

To achieve a decent fit to the observed volatility surface, and
to control the forward smile, we need at least two factors.

In the two-factor case, there are 8 parameters.

When calibrating, we find that the two-factor Bergomi model
is already over-parameterized. Any combination of parameters
that gives a roughly 1/

√
T ATM skew fits well enough.

Moreover, the calibrated correlations between the Brownian
increments dW

(i)
s tend to be high.
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ATM skew in the Bergomi model

The Bergomi model generates a term structure of volatility
skew ψ(τ) that is something like

ψ(τ) =
∑
i

1

κi τ

{
1− 1− e−κi τ

κi τ

}
.

This functional form is related to the term structure of the
autocorrelation functional C xξ.
Which is in turn driven by the exponential kernel in the
exponent in (3).

The observed ψ(τ) ∼ τ−α for some α.

It’s tempting to replace the exponential kernels in (3) with a
power-law kernel.
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Tinkering with the Bergomi model

This would give a model of the form

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
which looks similar to

ξt(u) = ξ0(u) exp
{
ηWH

t + drift
}

where WH
t is fractional Brownian motion.
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The RFSV model

In [Gatheral, Jaisson and Rosenbaum], using RV estimates as
proxies for daily spot volatilities, we uncovered two startlingly
simple regularities:

Distributions of increments of log volatility are close to
Gaussian, consistent with many prior studies.

For reasonable timescales of practical interest, the time series
of volatility is consistent with the simple model

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(4)

where WH is fractional Brownian motion.

We call our stationary version of (4) the Rough Fractional
Stochastic Volatility (RFSV) model after the formally identical
FSV model of [Comte and Renault].
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Representation in terms of Brownian motion

The Mandelbrot-Van Ness representation of fractional Brownian
motion WH is as follows (with γ = 1/2 = H):

WH
t = CH

{∫ t

−∞

dWP
s

(t − s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}

where the choice CH =
√

2H Γ(3/2−H)
Γ(H+1/2) Γ(2−2H) ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.

Substituting into (4) (and in terms of vt = σ2
t ), we obtain

log vu − log vt = 2 ν CH

{∫ u

−∞

dWP
s

(u − s)γ
−
∫ t

−∞

dWP
s

(t − s)γ

}
.
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Pricing under rough volatility (under P)

Then

log vu − log vt

= 2 ν CH

{∫ u

t

1

(u − s)γ
dWP

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dWP

s

}
=: 2 ν CH {Mt(u) + Zt(u)} . (5)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!
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The forward variance curve

Taking the exponential of (5) gives

vu = vt exp {2 ν CH [Mt(u) + Zt(u)]} (6)

Ignoring the difference between P and Q, and computing the
conditional expectation gives

EP [vu| Ft ] = ξt(u)

= vt exp {2 ν CH Zt(u)} E [ exp {2 ν CH Mt(u)}| Ft ]

where (by definition) ξt(u) is the forward variance curve at time t.

The Zt(u) are encoded in the forward variance curve ξt(u)!
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The rough Bergomi model

Rewriting (6) gives

vu = ξt(u)
exp {2 ν CH Mt(u)}

E [ exp {2 ν CH Mt(u)}| Ft ]

= ξt(u) E
(
η W̃H

t (u)
)

(7)

where η = 2 ν CH/
√

2H, E(·) denotes the stochastic exponential
and

W̃H
t (u) =

√
2H

∫ u

t

dWP
s

(u − s)γ

is a Volterra process with the fBm-like scaling property

var
[
W̃H

t (u)
]

= (u − t)2H .

We could call the model (7) a rough Bergomi or rBergomi
model.
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Features of the rough Bergomi model

The forward variance curve

ξu(t) = E [vu| Ft ] = vt exp

{
η
√

2H Zt(u) +
1

2
η2 (u − t)2H

}
.

depends on the historical path {Ws , s < t} of the Brownian
motion since inception (s = −∞ say).

The rough Bergomi model is non-Markovian:

E [vu| Ft ] 6= E[vu|vt ].

However, given the (infinite) state vector ξt(u), which can in
principle be computed from option prices, the dynamics of the
model are well-determined.
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Re-interpretation of the conventional Bergomi model

A conventional n-factor Bergomi model is not self-consistent
for an arbitrary choice of the initial forward variance curve
ξt(u).

ξt(u) = E [vu| Ft ] should be consistent with the assumed
dynamics.

Viewed from the perspective of the fractional Bergomi model
however:

The initial curve ξt(u) reflects the history {Ws ; s < t} of the
driving Brownian motion up to time t.
The exponential kernels in the exponent of (3) approximate
more realistic power-law kernels.

The conventional two-factor Bergomi model is then justified
in practice as a tractable Markovian engineering
approximation to a more realistic rough Bergomi model.
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The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Then
dSt
St

=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.
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The rBergomi model: Full specification

To recap, the rBergomi model reads:

dSt
St

=
√
vt dZt

vu = ξt(u) E
(
η W̃H

t (u)
)

(8)

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t .

Note in particular that we have achieved our earlier wish to
replace the exponential kernels in the Bergomi model with a
power-law kernel.
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Simulation of the rBergomi model

We simulate the rBergomi model as follows:

For each time, construct the joint covariance matrix for the
Volterra process W̃H and the Brownian motion Z .

Generate iid normal random variables and perform a Cholesky
decomposition to get a matrix of paths of W̃H and Z with
the correct joint marginals.

Hold these paths in memory to generate option prices for each
expiration.

Compute implied volatilities to get the volatility surface.

This procedure is very slow!

Speeding up the simulation is work in progress.
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Calibration of the rBergomi model

The rBergomi model has only three parameters: H, η and ρ.

If we had a fast simulation, we could just iterate on these
parameters to find the best fit to observed option prices. But
we don’t.

Alternatively, we could estimate H either from the term
structure of ATM SPX skew, or from the term structure of
ATM VIX volatilities.

Implied volatility of VIX should be “volatility of SPX
volatility”!

As we will see, even without proper calibration (i.e. just
guessing parameters), rBergomi model fits to the volatility
surface are amazingly good.



Implied volatility Stochastic volatility Pricing under rBergomi Change of measure

SPX smiles in the rBergomi model

In Figure 9, we show how a rBergomi model simulation is
consistent with the SPX option market as of 04-Feb-2010, a
day when the ATM volatility term structure happened to be
pretty flat.

rBergomi parameters were: H = 0.07, η = 1.9, ρ = −0.9.

Only three parameters to get a very good fit to the whole SPX
volatility surface!
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rBergomi fits to SPX smiles as of 04-Feb-2010

Figure 8: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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rBergomi 04-Feb-2010 fit detail

Figure 9: Feb-2014 expiration: Red and blue points represent bid and
offer SPX implied volatilities; orange smile is from the rBergomi
simulation.
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rBergomi ATM skews and volatilities

In Figures 10 and 11, we see just how well the rBergomi
model can match empirical skews and vols.

Recall also that the parameters we used are just guesses!
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Term structure of ATM skew in the rBergomi model

Figure 10: Blue points are empirical skews; the red line is from the
rBergomi simulation.
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Term structure of ATM volatility in the rBergomi model

Figure 11: Blue points are empirical ATM volatilities; the red line is
from the rBergomi simulation.



Implied volatility Stochastic volatility Pricing under rBergomi Change of measure

VIX smiles as of 04-Feb-2010

Figure 12: Blue ask volatilities; red points are bid volatilities; orange
lines are SVI fits; green dashed lines represent the VIX log-strip (VVIX).
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VIX futures in the rBergomi model

We denote the square of the VIX futures payoff by

ψ(T ) =
1

∆

∫ T+∆

T
E[vu|FT ] du.

Then

E [ψ(T )| Ft ] =
1

∆

∫ T+∆

T
ξt(u) du.

and, approximating the arithmetic mean by the geometric mean,

var[logψ(T )|Ft ] ≈ η2 D2
H (T − t)2H f H

(
∆

T − t

)
where DH =

√
2H

H+1/2 and

f H(θ) =
1

θ2

∫ 1

0

[
(1 + θ − x)1/2+H − (1− x)1/2+H

]2
dx .
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VVIX term structure in the rBergomi model

The VIX variance swaps (VVIX 2) are then given by

VVIX 2(T ) (T − t) ≈ var
[

log
√
ψ(T )

∣∣∣Ft

]
≈ 1

4
η2 D2

H (T − t)2H f H
(

∆

T − t

)
. (9)
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VVIX term structure as of 04-Feb-2010

Figure 13: Blue points are implied QV of log(VIX ) (VVIX 2). The red
curve is a fit of equation (9) with η = 2.36 and H = 0.022; the purple
dashed curve corresponds to H = 0.07 and η = 1.9; the green dashed
curve corresponds to H = 0.036 and η = 1.9.
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Remarks on the VVIX fit

Recall that the parameters we used to get the SPX fit were
just guessed.

The VIX fit indicates that we should perhaps decrease H,
increase η and decrease ρ (to maintain the original skew
levels).
Although we also see that it is hard to determine H and η
individually.

Recall also that the rBergomi model generates flat VIX smiles.

So although rBergomi may fit the term structure of VVIX, it is
not consistent with observed VIX smiles.
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Change of measure

So far, we have conflated P and Q.

We know, in particular from VIX options, that these two
measures are different.

Like the conventional Bergomi model, the rBergomi model
predicts VIX smiles that are almost exactly flat.
In contrast, observed VIX smiles are strongly upward sloping
(see Figure 13).

Intuitively, high volatility scenarios are priced more highly by
the market than low volatility scenarios.
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Formulation of the rough volatility model under Q

With some general change of measure

dWP
s = dWQ

s + µs ds,

we may rewrite the rough Bergomi model (7) under Q as

vu = EP [vu| Ft ] exp

{
η
√

2H

∫ u

t

1

(u − s)γ
dWP

s − η2 (u − t)2H

}
= EP [vu| Ft ] exp

{
η
√

2H

∫ u

t

1

(u − s)γ
dWQ

s − η2 (u − t)2H

+ η
√

2H

∫ u

t

1

(u − s)γ
µs ds

}
.

The last term in the exponent obviously changes the marginal
distribution of the vu; the vu will not be lognormal in general under
Q.
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The simplest change of measure

With the simplest change of measure

dWP
s = dWQ

s + µ ds,

with µ constant, we would have (still rBergomi form)

vu = EP [vu| Ft ] E

(
η
√

2H

∫ u

t

dWQ
s

(u − s)γ

)

× exp

{
η
√

2H

∫ u

t

µ

(u − s)γ
ds

}
= ξt(u) E

(
η
√

2H

∫ u

t

dWQ
s

(u − s)γ

)
(10)

where

ξt(u) = EP [vu| Ft ] exp

{
µ η
√

2H

∫ u

t

ds

(u − s)γ

}
.
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Estimating the price of volatility risk

Performing the last integration explicitly gives

ξt(u) = EP [vu| Ft ] exp

{
µ η

√
2H

H + 1/2
(u − t)H+1/2

}
. (11)

EP [vu| Ft ] is a variance forecast computed from the history
of RV as explained in [Gatheral, Jaisson and Rosenbaum].

ξt(u) may be estimated using the log-strip of SPX options.

In principle, we could compare the two historically to estimate
the price of risk µ using (11).
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Empirical study

For each of 2,658 days from Jan 27, 2003 to August 31, 2013:

We compute proxy variance swaps from closing prices of SPX
options sourced from OptionMetrics
(www.optionmetrics.com) via WRDS.

We form the forecasts EP [vu| Ft ] using 500 lags of SPX RV
data sourced from The Oxford-Man Institute of Quantitative
Finance (http://realized.oxford-man.ox.ac.uk).

To adjust for overnight variance (RV is over the trading day
only), we could follow [Corsi, Fusari, and La Vecchia] by
rescaling these estimates to match the sample close-to-close
variance.

This scaling factor would then be 1.3658.

However, we quickly observe that η, H and the scaling factor
are all time-varying quantities.

www.optionmetrics.com
http://realized.oxford-man.ox.ac.uk
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The RV scaling factor

Figure 14: The LH plot shows actual (proxy) 3-month variance swap
quotes in blue vs forecast in red (with no scaling factor). The RH plot
shows the ratio between 3-month actual variance swap quotes and
3-month forecasts.
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More on scaling

Empirically, it seems that the variance curve is a simple
scaling factor times the forecast, but that this scaling factor is
time-varying.

Recall that as of the close on Friday September 12, 2008, it
was widely believed that Lehman Brothers would be rescued
over the weekend. By Monday morning, we knew that
Lehman had failed.

In Figure 15, we see that variance swap curves just before and
just after the collapse of Lehman are just rescaled versions of
the RFSV forecast curves.
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Actual vs predicted over the Lehman weekend

Figure 15: S&P variance swap curves as of September 12, 2008 (red)
and September 15, 2008 (blue). The dashed curves are RFSV model
forecasts rescaled by the average 3-month scaling factor over the prior
week.
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Remarks

We note that

The actual variance swaps curves are very close to the
forecast curves, up to a scaling factor.

We are able to explain the change in the variance swap curve
with only one extra observation: daily variance over the
trading day on Monday 15-Sep-2008.

The SPX options market appears to be backward-looking in a
very sophisticated way.
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Summary

We uncovered a remarkable monofractal scaling relationship in
historical volatility.

This leads to a natural non-Markovian stochastic volatility
model under P.

The simplest specification of dQ
dP gives a non-Markovian

generalization of the Bergomi model.

The history of the Brownian motion {Ws , s < t} required for
pricing is encoded in the forward variance curve, which is
observed in the market.

This model fits the observed volatility surface surprisingly well
with only three parameters.

For perhaps the first time, we have a simple consistent model
of historical and implied volatility.
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